Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(28): 72652-72663, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178297

RESUMEN

Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).


Asunto(s)
Curcumina , Nanocápsulas , Polvos , Colorantes , Liposomas , Ácido Ascórbico
2.
Exp Parasitol ; 249: 108520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001581

RESUMEN

Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.


Asunto(s)
Enfermedad de Chagas , Nanocápsulas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Ratones , Animales , Femenino , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico
3.
Drug Chem Toxicol ; 46(1): 155-165, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34930069

RESUMEN

Curcumin is an active polyphenol substance found in the highest concentrations in the roots of Curcuma longa. Its health benefits have led to recent increases in the consumption of curcumin. It has anti-inflammatory and antioxidant activities and is a potent neuroprotective against diseases of the brain. Nevertheless, its low bioavailability and its relative difficulty crossing the blood-brain barrier limit curcumin's use for these purposes. Curcumin-loaded nanoparticles may be an effective treatment for several diseases although there is a paucity of studies reporting its safety in the central nervous system (CNS). Therefore, this study aimed to identify non-neurotoxic concentrations of free curcumin and two nanoformulations of curcumin. Cell lines BV-2 and SH-SY5Y, both originating from the CNS, were evaluated after 24, 48, and 72 h of treatment with free curcumin and nanocapsules We measured viability, proliferation, and dsDNA levels. We measured levels of reactive oxygen species and nitric oxide as proxies for oxidative stress in culture supernatants. We found that free curcumin was toxic at 10 and 20 µM, principally at 72 h. Nanoformulations were more neurotoxic than the free form. Safe concentrations of free curcumin are between 1-5 µM, and these concentrations were lower for nanoformulations. We determined the ideal concentrations of free curcumin and nanocapsules serving as a basis for studies of injuries that affect the CNS.


Asunto(s)
Curcumina , Nanocápsulas , Neuroblastoma , Humanos , Curcumina/farmacología , Nanocápsulas/toxicidad , Línea Celular , Estrés Oxidativo
4.
Int J Pharm X ; 6: 100193, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38204452

RESUMEN

Nanoencapsulation of chemotherapeutics, including doxorubicin, can endow the formulations with unique properties, such as a decrease in adverse effects and toxicity. The chicken embryo model is an alternative and well-accepted strategy for evaluating the toxicity and efficacy of drugs and nanoformulations. Therefore, this study proposes the development of a new lipid nanocarrier for doxorubicin delivery (NanoLip-Dox) and posterior evaluation of toxicological profile and antitumoral efficacy against a breast tumor in chicken embryos. NanoLip-Dox showed a unimodal particle size (< 150 nm), negative zeta potential (-19.5 mV), absence of drug crystals, drug content of 0.099 mg·mL-1, and high entrapment efficiency (95%). NanoLip-Dox did not cause toxicity in the chicken embryos; in contrast, doxorubicin hydrochloride induced moderate irritation in the chorioallantoic membrane (at 862.1 µmol·L-1), a survival rate of 50% (at 1.7 µmol·L-1), and an increase in aspartate aminotransferase (at 862.1, 344.8, and 172.4 µmol·L-1). In addition, NanoLip-Dox (at 1.7 µmol·L-1) showed potent antitumor efficacy with a high tumor remission percentage (40.9 ± 9.7%) compared to the control group (8.6 ± 14.8%). These findings together with the absence of toxicity concerning morphological characteristics, weights of embryos and organs, hematologic parameters, and enzymatic activity (alanine aminotransferase, aspartate aminotransferase, and creatinine) suggest the safety and efficacy of NanoLip-Dox.

5.
Nat Prod Res ; 36(5): 1321-1326, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33356570

RESUMEN

The objective of this work was to produce and characterise nanoemulsions containing tucumã extract and to evaluate the performance of the nanostructure and the free compound regarding antitumor activity, cytotoxicity, and oxidative metabolism in NB4/APL cells. The nanoemulsions showed adequate physicochemical characteristics (average size approx. 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) maintained stable up to 90 days of storage in refrigeration condition. The nanoformulations did not present protein corona formation. Blank nanoemulsion treatments showed moderate toxicity. Furthermore, the nanoemulsion loaded with extract showed better antileukemic results than the free extract. However, nanoemulsions can be promising carriers of natural compounds, emphasising their biological properties and constituting alternatives in treating diseases.


Asunto(s)
Arecaceae , Nanoestructuras , Antioxidantes/química , Emulsiones/química , Nanoestructuras/química
6.
Braz. J. Pharm. Sci. (Online) ; 58: e20492, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420382

RESUMEN

Abstract The objective of this study was to evaluate the influence of vitamin C (VC) on the stability of stored liposomes under different climatic conditions. Liposomal formulations containing 1 mg/mL of VC (LIP-VC) and blank formulations (LIP-B) were prepared by the reverse-phase evaporation method. After preparation, they were characterized according to their refractive index, average vesicle diameter, polydispersity index (PDI), zeta potential, pH, content, encapsulation efficiency (EE%), morphology, stability and antioxidant activity. For stability, LIP-VC and LIP-B were stored in different climatic conditions (4 °C, 25 °C and 40 °C) for 30 days. The LIP-VC presented 1.3365 refractive index, 161 nm of mean diameter, 0.231 PDI, -7.3 mV zeta potential, 3.2 pH, 19.4% EE%, spherical morphology, 1 mg/mL of VC content, and antioxidant activity of 12 and 11.4 μmol of TE/mL for the radical DPPH and ABTS+, respectively. During stability, the LIP-B stored in 40 °C showed an instability in the parameters: PDI, vesicle size and zeta potential after 15 days, while the LIP-VC remained stable in its size and PDI for 30 days. After that, it is shown that VC can be used as an antioxidant and stabilizer in liposomes to increase the stability and shelf-life of vesicles.

7.
Anim Nutr ; 7(2): 521-529, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34258441

RESUMEN

Curcumin-containing nanocapsule powder formulations have not been used in ruminant feed to date, despite the fact that curcumin is known to be a functional food additive. The objective of this study was to determine whether ethyl polymethacrylate (Eudragit L-100) nanocapsules loaded with curcumin (N-CU) would improve health and growth of lambs. Thirty-two male Lacaune lambs (body weight [BW] = 16 ± 0.99 kg; 45 d of age) were randomly assigned to 1 of 4 treatments: T0, T1, T2 and T4, representing supplementation of curcumin at 0, 1, 2, and 4 mg/kg concentrate, respectively. The animals in each treatment were allocated in 4 pens of 2 lambs each (8 lambs per treatment). The experiment lasted 17 d, with samples and measurements collected on d 0, 7, 12, and 17. The T2 lambs had greater average daily gain than T0 lambs. Regression analysis showed that the ideal dose of N-CU to enhance weight gain was 1.89 mg/kg concentrate. There were significant interactions (P < 0.05) between treatments × time for hematological variables, particularly for increases in erythrocytes (T2) and reductions in counts of leukocytes, neutrophils, and lymphocytes in T1 and T2. There were significant interactions between treatment × time for total protein, globulin, urea, and triglyceride levels. Stimulation of the antioxidant system was also observed. There were increased levels of non-protein thiols (NPSH), as well as increased activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in the supplemented animals. Levels of reactive oxygen species (ROS) were lower in the serum of supplemented lambs. In general, the 4 mg/kg dose had no positive effects on growth or health. This was an unexpected result, given the known properties of curcumin. Taken together, these findings suggest that addition of low concentrations of nanoencapsulated curcumin (T1 and T2) in lamb feed improves health, minimizing oxidative stress and generates anti-inflammatory effects that may have contributed indirectly to greater weight gain. Nanocapsules potentiate the effects of curcumin and may emerge as a new tool in animal nutrition.

8.
Avicenna J Phytomed ; 11(1): 32-34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628718

RESUMEN

OBJECTIVE: This study was done to evaluate the in vitro and in vivo effects of the essential oil (OE-CL) and nanoemulsion (N-CL) of Cymbopogon flexuosus against Trichomonas gallinae. MATERIALS AND METHODS: In vitro assays were done with 106 parasites and OE-CL and N-CL in the concentrations: 110, 220, 330, 440, 550, 660, 770 and 880 µg/ml and four controls: CN (culture medium and trophozoites), MTZ (trophozoites plus 800 µg/ml of metronidazole), TW (trophozoites plus vehicles used for solubilization of derivatives (0.01% Tween) and NB (blank nanoemulsion 880 µg/ml). The in vivo assay was done in 35 quails (Coturnix coturnix) infected experimentally 4x104 mg/kg, were divided in seven groups (n=5): A (control-healthy), B (control infected), C (control TW 0.01%), D (NB 0.88 mg/kg), E (drug MTZ 25 mg/kg, F (OE-CL at 0.55 mg/kg) and G (N-CL at 0.44 mg/kg), during 7 consecutive days. RESULTS: The in vitro test showed that the OE-CL (550 µg/ml) and N-CL (440 µg/ml) concentrations reduced the trophozoites viability in 100%. In the in vivo test, the treatment with OE-CL was efficient on the 4th treatment day and the N-CL after the 3rd day, and the MTZ in the therapeutic concentration was efficient on the 7th day. CONCLUSION: It can be observed in this study that the lemon grass has natural potential antitrichomonal activity against T. gallinae in vitro and in vivo.

9.
An Acad Bras Cienc ; 92(4): e20191066, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33206785

RESUMEN

Inflammatory dermatoses are prevalent worldwide, with impacts on the quality of life of patients and their families. The aim of this study was to determine the anti-inflammatory effects of Achyrocline satureioides oily extracts and nanocapsules on the skin using a mouse model of irritant contact dermatitis induced by croton oil, and a skin inflammation model induced by ultraviolet B (UVB) radiation. The mice were treated with 15 mg/ear oily extract (HG-OLAS) or nanocapsules (HG-NCAS) of A. satureioides incorporated into Carbopol® 940 hydrogels. We found that HG-OLAS and HG-NCAS formulations reduced ear edema in croton oil-induced lesions with maximum inhibitions of 54±7% and 74±3%, respectively. HG-OLAS and HG-NCAS formulations decreased ear edema induced by UVB radiation (0.5 J/cm2), with maximum inhibitions of 68±6% and 76±2% compared to the UVB radiation group, respectively. HG-OLAS and HG-NCAS modulated myeloperoxidase (MPO) activity after croton oil induction. Furthermore, croton oil and UVB radiation for 6 and 24 h, respectively, stimulated polymorphonuclear cells infiltration. The topical treatments reduced inflammatory processes, as shown by histological analysis. Together, the data suggest that topical application of A. satureioides oily extracts and nanocapsules produced antiedematogenic and anti-inflammatory effects. They constitute a compelling alternative for treatment of skin injuries.


Asunto(s)
Achyrocline , Dermatitis por Contacto , Nanocápsulas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dermatitis por Contacto/tratamiento farmacológico , Edema/tratamiento farmacológico , Humanos , Hidrogeles , Irritantes/uso terapéutico , Nanocápsulas/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Calidad de Vida
10.
Microb Pathog ; 148: 104496, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32910982

RESUMEN

The aim of this study was to determine whether the addition of curcumin (free and encapsulated) to chick feed would minimize the negative effects on health and performance caused by daily intake of fumonisin. We used 50 birds, divided into five treatments: CP, basal diet with 600 mg/kg of fumonisin, with antibiotic and coccidiostatic agent; CU, 600 mg/kg of fumonisin and 50 mg/kg of curcumin; NC5, feed with 600 mg/kg of fumonisin and 5 mg of nano-curcumin/kg of feed; NC10, feed with 600 mg/kg of fumonisin and 10 mg of nano-curcumin/kg of feed; and CN, fumonisin-free diet, with antibiotic and coccidiostatic. We measured weights, weight gain, and serum biochemistry, as well as antioxidant and oxidant activities. Lower body weight and weight gain were observed in chicks that received feed with fumonisin; curcumin did not minimize this negative effect. Lower glucose and triglyceride levels were also observed in the NC10 group, while the highest cholesterol levels were observed in all groups of birds that consumed fumonisin compared to the CN group. Uric acid levels were significantly lower in CP than in CN. Levels of liver enzymes were higher in CP than in CN. The highest levels of thiobarbituric acid reactive substances were found in CP and CU, whereas ROS was higher in CU compared to CN. Superoxide dismutase activity was significantly lower in CP, while glutathione S-transferase activity was higher in the CP group. Catalase activity was lower in groups of birds that consumed fumonisin compared to CN. Taken together, these findings suggest that intake of curcumin-loaded nanocapsules (10 mg/kg) had hepaprotective and antioxidant effects in chicks artificially intoxicated with fumonisin, minimizing the negative effects caused by this mycotoxin.


Asunto(s)
Curcumina , Fumonisinas , Fusarium , Nanocápsulas , Alimentación Animal/análisis , Animales , Pollos , Curcumina/metabolismo , Curcumina/farmacología , Fumonisinas/toxicidad , Hígado/metabolismo , Estrés Oxidativo
11.
Arch Anim Nutr ; 74(5): 397-413, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32602378

RESUMEN

The objectives of this study were to produce dog food containing curcumin replacing synthetic antioxidants, to evaluate its beneficial effects on animal growth and health. Curcumin (100 mg/kg) was added after the extrusion process along with the other micronutrients. The final concentration of curcumin was 32.9 mg/kg. The control feed was composed of the same ingredients without curcumin. After a storage of 6 months, feed composition and pH did not differ; however, the feed with curcumin showed lower protein oxidation, lipid peroxidation and higher total antioxidant capacity. After 2 months of feed production, 12 young Beagle dogs received either curcumin-containing food (n = 6)  or the control diet (n = 6). The animals were fed twice a day using individual kennels. Blood samples were taken on d 1, 35 and 42. During the first 30 d of the study, the animals had natural infectious diseases that were controlled with anti-protozoals and antibiotics. Greater numbers of red blood cells were observed in dogs fed with curcumin (d 35 and 45), and there were greater numbers of white blood cells as a consequence of increased neutrophils on d 42. At the end of the experiment, a significant reduction in the number of lymphocytes was observed in dogs that ingested curcumin (d 42), suggesting an anti-inflammatory effect, manifested as a decrease in globulin levels. In the final 15 d of the experiment, the animals were clinical healthy. Higher serum levels of glucose, urea, triglycerides and cholesterol were observed in dogs fed with curcumin. Curcumin increased the activity of several antioxidant enzymes in addition to non-protein thiols and the total antioxidant capacity in the serum, consequently reducing levels of oxygen reactive species. Curcumin supplementation of dogs did not favour growth or weight gain. Neverthless, it was concluded that curcumin improved animal health, with emphasis on the stimulation of the antioxidant system and evidence of an anti-inflammatory effect.


Asunto(s)
Alimentación Animal/análisis , Antioxidantes/metabolismo , Curcumina/metabolismo , Perros/fisiología , Animales , Antioxidantes/administración & dosificación , Curcumina/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Perros/crecimiento & desarrollo , Salud
12.
Res Vet Sci ; 132: 156-166, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32590223

RESUMEN

The aim of this study was to determine whether curcumin and yucca extract addition in broiler feed improves growth, health, and meat quality, and to measure coccidiostatic and antimicrobial activity so as to enable replacement of conventional performance enhancers. We used 240 birds in four treatments: CN, basal feed with antibiotics and coccidiostatic drugs; CU, feed with 100 mg/kg of curcumin; YE, feed with 250 mg/kg of yucca extract; and CU + YE, feed with the combination of 100 mg curcumin/kg and 250 mg yucca extract/kg. A significant reduction in oocysts was observed in birds supplemented with combined additives (CU + YE) at days 37 compared to other treatments and at 42 days in relation to the CU treatment. At 42 days, the total bacterial counts for the CN and CU treatments were lower than the others. Birds fed the additive had lower numbers of leukocytes, lymphocytes, and heterophils than did those in the CN treatment. The highest levels of antioxidants in meat were observed in the treatments with the additives, together with lower levels of lipid peroxidation compared to the CN. The lowest protein oxidation was observed in the CU + YE treatment in relation to the other treatments. Lower total levels of saturated fatty acids (SFA) were observed in the CU treatment than in the CN. There were lower levels of monounsaturated fatty acids (MUFA) in the meat of birds in the YE treatment in relation to the others. Higher levels of total polyunsaturated fatty acids (PUFA) were observed in birds that consumed curcumin, individually and in combination with yucca extract. Taken together, the data suggest that curcumin and yucca extract are additives that can potentially replace conventional growth promoters; they improved bird health. Changes in the fatty acid profile of meat (increase in the percentage of omegas) are beneficial to the health of the consumer.


Asunto(s)
Antibacterianos/metabolismo , Pollos/metabolismo , Coccidiostáticos/metabolismo , Curcumina/química , Extractos Vegetales/metabolismo , Yucca/química , Alimentación Animal/análisis , Animales , Antibacterianos/administración & dosificación , Pollos/crecimiento & desarrollo , Coccidiostáticos/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Masculino , Carne/análisis , Extractos Vegetales/administración & dosificación , Distribución Aleatoria
13.
J Food Biochem ; 43(8): e12942, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31368562

RESUMEN

The main objective of this study was to evaluate whether the addition of curcumin-loaded nanocapsules (prepared and characterized) in the diets of dairy sheep improved milk quality. The nanocapsules were prepared using two polymers: poly-ε-caprolactone (PCL) and Eudragit L-100. The nanocapsules contained 0.25 mg/ml (Nano-Eudragit L-100) and 2 mg/ml (Nano-PCL) of curcumin. Dairy sheep were divided into four groups: A (control), B (30 mg free curcumin/kg concentrate), C (3 mg Nano-PCL/kg concentrate), and D (3 mg Nano-Eudragit/kg concentrate). We observed that the number of total leukocytes and serum globulin levels were lower in Group D than in the control (Group A) (p < 0.05). Antioxidant capacity against peroxyl radicals (ACAP) and catalase enzymes was elevated in Group D, with consequently reduced lipid peroxidation (LPO; p < 0.05). In milk, there were no differences in production and composition between groups during the experimental period (p > 0.05); however, ACAP increased and LPO decreased in milk. PRACTICAL APPLICATIONS: Curcumin is a functional molecule with potent antioxidant, anti-inflammatory, and antimicrobial actions, used frequently and with medical indications in human food. Free curcumin in sheep diets improves milk quality and increases its shelf life. This study showed that curcumin nanocapsules produced from the Eudragit L-100 polymer potentiated the anti-inflammatory and antioxidant actions of dairy sheep when used in the diet daily, at doses 10 times lower than that of free curcumin. These positive effects were reflected in higher total antioxidant capacity and lower lipid peroxidation in milk in sheep-fed curcumin-loaded Eudragit L-100 nanocapsules, generating desirable milk properties. In practice, the use of nanotechnology enhances the beneficial effects of curcumin in milk, possibly creating a nutraceutical food desirable to consumers.


Asunto(s)
Antioxidantes/metabolismo , Curcumina/administración & dosificación , Leche/química , Ovinos/metabolismo , Alimentación Animal/análisis , Animales , Curcumina/química , Suplementos Dietéticos/análisis , Composición de Medicamentos , Femenino , Almacenamiento de Alimentos , Peroxidación de Lípido , Leche/metabolismo , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Ácidos Polimetacrílicos/química
14.
Microb Pathog ; 134: 103564, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31163248

RESUMEN

Bacterial infections require special care since the indiscriminate use of antibiotics to treat them has been linked to the emergence of resistant strains. In this sense, phytoterapeutic alternatives such as curcumin and its nanocapsules have emerged as a promising supplement in optimizing availability of bioactives and reducing the development of antimicrobial resistance. Thus, the aim of this study was to verify the effects of pure and nanoencapsulated curcumin in the treatment of experimental listeriosis in gerbils regarding many aspects including antibacterial effect, antioxidant mechanisms involved and the energetic metabolism. Four groups were used containing 6 animals each: T0 (control), T1 (infected), T2 (infected and treated with free curcumin - dose of 30 mg/kg/day) and T3 (infected and treated with nanocapsules containing curcumin - a dose of 3 mg/kg/day). Treated animals received curcumin for 6 consecutive days starting 24 h after Listeria monocytogenes infection. All animals were euthanized on the 12th day after L. monocytogenes infection. Quantitative polymerase chain reaction (qPCR) identified L. monocytogenes DNA in the spleens of all animals of the T1 group, as well as T2 (2 out of 6) and T3 (5 out of 6). The weight of the spleens confirmed the infection, since it was larger in the T1 group, differing statistically from T0, and similarly to T2 and T3. Hepatic histopathological examination showed mild infiltration of neutrophils and macrophages, except for the T3 group (only 1/6). In the liver, the pyruvate kinase activity was higher in T1 and T2 compared to T0 and T3. The adenylate kinase activity did not differ between groups. The Na+/K+ATPase activity was lower in T1 group compared to T0 and T3. Lipoperoxidation was lower in the T3 group compared to groups T0, T1 and T2. The antioxidant capacity against peroxyl radicals was higher in T1, T2 and T3 groups compared to T0. In conclusion, free curcumin showed potent antibacterial effects; however, the nanoencapsulated form was able to minimize the effects caused by L. monocytogenes regarding tissue injury, changes on enzymes of the energetic metabolism, in addition to an antioxidant effect against lipoperoxidation.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/uso terapéutico , Listeria monocytogenes/efectos de los fármacos , Listeriosis/tratamiento farmacológico , Listeriosis/veterinaria , Nanocápsulas/química , Adenosina Trifosfatasas , Adenilato Quinasa/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Curcumina/química , Suplementos Dietéticos , Modelos Animales de Enfermedad , Gerbillinae , Homeostasis/efectos de los fármacos , Inflamación , Peroxidación de Lípido/efectos de los fármacos , Listeriosis/microbiología , Hígado/patología , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Ácidos Polimetacrílicos/uso terapéutico , Piruvato Quinasa/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Bazo/patología
15.
Ecotoxicol Environ Saf ; 169: 207-215, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30448703

RESUMEN

Mancozeb is a fungicide widely used in agriculture, mostly against the pathogen Glomerella cingulata responsible for the rot of ripe grape, but presents high toxicity. Strategies are sought to reduce the toxicity of this fungicide and alternative treatments are welcome. An alternative could be the use of clove oil, which has Eugenol as its major compound, and has antifungal potential against G. cingulata, however, Eugenol is susceptible to degradation processes which may compromise its efficacy. The nanoencapsulation of Mancozeb and Eugenol is a possible strategy to overcome the limitations of toxicity, solubility and instability of these compounds. Therefore, the objective of this study is to develop nanoemulsions containing Mancozeb (0.1 mg/mL) and Eugenol (33 mg/mL), isolated or associated, and evaluate the safety of these formulations through cytotoxicity, genotoxicity and ecotoxicity tests. Nanoemulsions were developed by the spontaneous emulsification method, cytotoxicity and genotoxicity were evaluated in healthy human cells through MTT, Dichlorofluorescein diacetate and Picogreen tests, and ecotoxicity assessment was carried out using the chronic toxicity test in springtails. After preparation, the physicochemical characterization of the nanoemulsions were performed which presented mean particle size between 200 and 300 nm, polydispersity index less than 0.3, negative zeta potential and acid pH. The nanoencapsulation was able to avoid the reduction of the cell viability caused by Mancozeb, while Eugenol was shown to be safe for cell use in both free and nanostructured forms, however the association of the two active compounds showed toxicity in the higher doses of Mancozeb. In the ecotoxicity tests, both free Mancozeb and Eugenol forms presented high toxic potential for soil, whereas the nanoencapsulation of these compounds did not cause a reduction in number of springtails. Therefore, from the tests performed, it was possible to observe that nanoencapsulation of Mancozeb and Eugenol is a safe alternative for the application of these compounds mainly in agriculture.


Asunto(s)
Artrópodos/efectos de los fármacos , Daño del ADN , Eugenol/toxicidad , Fungicidas Industriales/toxicidad , Maneb/toxicidad , Nanocápsulas/toxicidad , Zineb/toxicidad , Animales , Artrópodos/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Emulsiones , Eugenol/química , Fungicidas Industriales/química , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Maneb/química , Nanocápsulas/química , Tamaño de la Partícula , Phyllachorales/efectos de los fármacos , Suelo/química , Pruebas de Toxicidad , Zineb/química
16.
Microb Pathog ; 118: 268-276, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29581028

RESUMEN

The increase of microbial resistance generates the search for new substances with antimicrobial potential. The essential oil of Cymbopogon flexuosus (Lemongrass) stands out in the literature for its antimicrobial, insecticide and antioxidant properties, but it has high volatilization and low stability, and the nanoencapsulation of this oil could be an alternative to overcome these limitations. Thus, the objective of this study was to develop, for the first time, nanoemulsions containing the essential oil of C. flexuosus, through a method that does not use organic solvent and with temperature control to avoid the volatilization of the oil, characterize and evaluate of stability and the antimicrobial and antibiofilm activities of these nanoemulsions. Nanoemulsions presented adequate physicochemical characteristics (average size less than 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) which were maintained during 90 days of storage, and the nanoencapsulation of the C. flexuosus oil enhanced its therapeutic efficacy against the microorganisms evaluated in this study compared to the free oil. These results are very promising because among the microorganisms that the nanoemulsion containing C. flexuosus was able to inhibit the formation of biofilm are the bacteria Pseudomonas aeruginosa and Staphylococcus aureus, which were recently listed by the World Health Organization as priority pathogens for development of new antibiotics.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Cymbopogon/química , Nanopartículas/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antioxidantes , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Aceites Volátiles/química , Tamaño de la Partícula , Aceites de Plantas/química , Aceites de Plantas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Temperatura
17.
Microb Pathog ; 113: 335-341, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29122674

RESUMEN

Rapidly growing mycobacteria (RGM) are opportunistic microorganisms that can cause both local and disseminated infections. When in biofilm, these pathogens become highly resistant to antimicrobials used in clinical practice. Composed abundantly of polymeric substances, biofilms delay the diffusion of antimicrobials, preventing the drug from penetrating the deeper layers and having an effective action. Therefore, the search for new and alternative therapeutic options has become of fundamental importance. Natural products fall into these options, especially essential oils. However, these oils present problems, such as low miscibility in water (which decreases its bioavailability) and degradation by light and temperature. Thus, the objective of this work was to explore the action of free essential oil and nanoemulsions of Cymbopogon flexuosus on strains of RGM, in planktonic and sessile forms. In this work, standard strains of Mycobacterium fortuitum (ATCC 6841), Mycobacterium massiliense (ATCC 48898) and Mycobacterium abscessus (ATCC 19977) were used. The susceptibility of the microorganisms in planktonic form was obtained by conventional microdilution techniques and by cell viability curve. The analysis of the antibiofilm activity was performed by a semi-quantitative macrotechnique. The nanoemulsion exhibited significant antimicrobial activity, with minimum inhibitory concentration values lower than those presented by the free essential oil, against strains in the planktonic state. However, both were efficient in destroying the already formed biofilm, whereas only the free oil inhibited the formation of mycobacterial biofilm. This study demonstrated the therapeutic potential of C. flexuosus essential oil, especially in its nanostructured form, which can be demonstrated against infections caused by rapidly growing mycobacteria.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cymbopogon/química , Micobacterias no Tuberculosas/efectos de los fármacos , Aceites Volátiles/farmacología , Exudados de Plantas/farmacología , Biopelículas/crecimiento & desarrollo , Brasil , Emulsiones , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...